Обучающие программы и исследовательские работы учащихся
Помогаем учителям и учащимся в обучении, создании и грамотном оформлении исследовательской работы и проекта.

Объявление

Наш баннер

Сайт Обучонок содержит исследовательские работы и проекты учащихся, темы творческих проектов по предметам и правила их оформления, обучающие программы для детей.
Будем благодарны, если установите наш баннер!
Баннер сайта Обучонок
Код баннера:
<a href="https://obuchonok.ru/" target="_blank"> <img src="https://obuchonok.ru/banners/banob2.gif" width="88" height="31" alt="Обучонок. Исследовательские работы и проекты учащихся"></a>
Все баннеры...

Виды чистых полупроводников

На внешней оболочке атомов простых полупроводников имеется четыре валентных электрона. Когда атомы связываются в кристаллическую решетку, эти электроны становятся общими для ближайших четырех атомов, такая связь называется ковалентной.

В невозбужденном состоянии свободных электронов нет. Но при внешнем энергетическом воздействии какому-либо электрону сообщается дополнительная энергия, он отрывается от атома и начинает свободно перемещаться по кристаллу.


Но при этом на его месте образуется электронная дырка. Т.о. процесс генерации носителей в собственном полупроводнике – образование электронно-дырочной пары. А процесс исчезновения этой пары, т.е., когда дырка встречается с электроном – рекомбинация.

полупроводники 1

Кристаллическая решетка собственного полупроводника

Дырки и электроны, образованные в процессе генерации, есть собственные носители зарядов ni, pi.

Концентрация собственных носителей заряда

Так как при каждом акте возбуждения в собственном полупроводнике одновременно образуются два заряда, противоположных по знаку, то общее количество носителей будет в два раза больше числа электронов в зоне проводимости.

В результате процессов генерации и рекомбинации при любой температуре тела устанавливается равновесная концентрация возбужденных носителей: электронов.

D W - ширина запрещенной зоны полупроводника, Nc - эффективная плотность состояния (число энергетических уровней в единице объема ПП) в свободной зоне, NB - то же в валентной зоне. Коэффициент 2 показывает, что на каждом уровне могут находиться по два электрона с противоположными спинами.

В случае собственной электропроводности, т.к. подвижность электрона больше подвижности дырки. А подвижность µ есть отношение скорости перемещения носителя к напряженности электрического поля в ПП.

Следовательно, в поле кристаллической решетки электроны и дырки обладают различной инерционностью, т.е. отличаются друг от друга эффективными массами. В большинстве случаев, следовательно, собственная электропроводность полупроводника имеет слабо преобладающий электронный характер.

Примесные полупроводники


Для большинства полупроводниковых приборов используются примесные полупроводники. Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда наблюдается при достаточно высокой температуре, т.е. с большой шириной запрещенной зоны. Поставщиками свободных носителей зарядов в рабочем интервале температур в таких ПП являются примеси.

Примесями в простых полупроводниках являются чужеродные атомы. В химических же соединениях это не только чужеродные атомы, но и атомы тех самых элементов, избыточные по стехиометрическому составу. Кроме того, роль примесей играют дефекты кристаллической решетки.

Рассмотрим роль примесей, атомы которых создают дискретные энергетические уровни в запрещенной зоне полупроводника.

Германий

Существование и основные свойства германия проедсказал в 1870г Д.И.Менделеев, назвав его экосилицием. В 1886г немецкий химик Винклер обнаружил в минеральном сырье новый элемент, который назвал германием. Германий оказался тождественным экосилицию. Открытие германия явилось торжеством Периодического закона Д.И. Менделеева.

Германий относится к числу сильно рассеянных элементов, т.е. часто встречающихся в природе, но присутствует в различных минералах в очень небольших количествах. Его содержание в земной коре составляет около 7·10-4 %, что примерно равно природным запасам таких распространенных металлов, как олово и свинец и существенно превышает количество серебра, кадмия, ртути, сурьмы и др.

Тем не менее, получение германия в элементарном виде вызывает большие затруднения. В настоящее время основными источниками промышленного получения германия являются побочные продукты цинкового производства, коксования углей, а также германиевые концентраты, получаемые из медносвинцовоцинковых руд.

Чистый германий обладает металлическим блеском, характеризуется относительно высокой твердостью и хрупкостью, подобно кремнию, он кристаллизуется в структуру алмаза.

Кристаллический германий химически устойчив на воздухе при комнатной температуре. При нагревании его до 650°С он окисляется с образованием двуокиси GeO2.

При комнатной температуре германий не растворяется в воде, соляной и разбавленной серной кислотах. Активные растворители – смесь азотной и плавиковой кислот.

Германий обладает относительно невысокой температурой плавления - 936°С и ничтожно малым давлением насыщенного пара при этой температуре. Ширина запрещенной зоны при изменении температуры изменяется по линейному закону.

Для изготовления полупроводниковых приборов применяют германий с определенными добавками электрически активных примесей. На основе германия выпускается широкая номенклатура приборов самого различного назначения и, в первую очередь, диодов и транзисторов.

Выпрямительные плоскостные диоды рассчитаны на прямые токи от 0.3 до1000 А при падении напряжения не более 0.5 В. Недостатком германиевых диодов являются достаточно невысокие обратные напряжения. Германиевые транзисторы могут быть низко и высокочастотными (НЧ и ВЧ), мощными и маломощными.

Германий используют также для создания лавинно-пролетных и туннельных диодов, варикапов, точечных ВЧ, импульсных и СВЧ-диодов. В импульсных диодах для достижения высокой скорости переключения требуется материал с малым временем жизни неравновесных носителей заряда. Этому требованию удовлетворяет германий, легированный золотом.

Благодаря относительно высокой подвижности носителей заряда, германий применяют для изготовления датчиков Холла и других магниточувствительных приборов.

Оптические свойства германия позволяют использовать его для изготовления фототранзисторов и фотодиодов, оптических линз с большой светосилой, оптических фильтров, а также счетчиков ядерных частиц. Рабочий диапазон германиевых приборов от -60°С до +70°С.

Кремний


В противоположность германию, кремний является одним из самых распространенных элементов в земной коре, где его содержится 29.5% по массе. По распространенности кремний занимает второе место после кислорода. Многочисленные соединения кремния входят в большинство горных пород и минералов. Песок и глина также представляют собой соединения кремния.

Исходным сырьем при получении кремния является кремнезем, из которого кремний восстанавливают углеродосодержащим материалом в электрических печах.

Кремний кристаллизуется в структуру алмаза с несколько меньшим, чем у германия периодом идентичности кристаллической решетки. Меньшие, чем у германия расстояния между атомами в решетке обуславливают более сильную ковалентную связь и, как следствие этого, более широкую запрещенную зону.

В химическом отношении кремний является относительно инертным веществом. Он не растворим в воде, не реагирует со многими кислотами в любой концентрации. Растворяется в смеси азотной и плавиковой кислот и в кипящих щелочах. Кремний устойчив на воздухе при нагревании до 900°С. Выше этой Т° он начинает активно окисляться с образованием двуокиси кремния SiO2.

Кремний обладает сравнительно высокой температурой плавления и в расплавленном состоянии отличается высокой химической активностью.

Благодаря более широкой запрещенной зоне собственное удельное сопротивление кремния на три с лишним порядка превосходит собственное сопротивление германия.

Кремний является базовым материалом при изготовлении планарных транзисторов и интегральных микросхем.

Несмотря на интенсивное развитие интегральной микроэлектроники, в общем объеме выпуска ПП изделий значительную долю составляют кремниевые дискретные приборы. Из кремния изготавливают выпрямительные, импульсные и СВЧ-диоды, НЧ и ВЧ, мощные и маломощные биполярные транзисторы, полевые транзисторы и приборы с зарядовой связью. Рабочие частоты планарных транзисторов достигают 10 ГГц.

Кремниевые плоскостные выпрямительные диоды могут выдерживать обратные напряжения до 1500 В, существенно превосходя по этим параметрам германиевые. Из кремния изготавливают большинство стабилитронов и тиристоров. Кремниевые стабилитроны в зависимости от степени легирования материала имеют напряжение стабилизации от 3 до 400 В.

Широкое применение в технике нашли кремниевые фоточувствительные приборы, особенно фотодиоды, отличающиеся высоким быстродействием. Для системы энергоснабжения космических аппаратов используются кремниевые солнечные батареи.

Подобно германию, кремний используется для изготовления детекторов ядерных излучений, датчиков Холла и тензодатчиков.

Благодаря более широкой запрещенной зоне, кремниевые приборы могут работать при более высоких температурах, чем германиевые. Верхний предел для них 180-200°С.

Полупроводниковые соединения типа АIIIВV


Соединения типа АIIIВV являются ближайшими электронными аналогами германия и кремния. Они образуются в результате соединения элементов III группы Периодической системы (бора, алюминия, галлия и индия) с элементами V группы (азотом, фосфором, мышьяком и сурьмой). Висмут и таллий не образуют соединений рассматриваемого ряда.

Соединения АIIIВV принято классифицировать по металлоидному признаку. Соответственно различают нитриды, фосфиды, арсениды и антимониды.

Многообразие свойств полупроводников типа АIIIВV обуславливает их широкое применение в приборах и устройствах различного технического назначения. Особый интерес к этой группе материалов был вызван потребностями оптоэлектроники в быстродействующих источниках и приемниках излучения. Инжекционные лазеры и светодиоды на основе ПП АIIIВV характеризуются высокой эффективностью преобразования электрической энергии в электромагнитное излучение.

Большой набор значений ширины запрещенной зоны у этих полупроводников позволяет создавать на их основе различные виды фотоприемников, перекрывающих широкий диапазон спектра. Среди них наибольшее распространение получили фотодиоды и фотоэлементы.

Арсенид галлия (GaAs) потенциально является одним из лучших фоточувствительных материалов для применения в солнечных батареях.

Антимонид индия (InSb) имеет важное техническое значение для изготовления приемников инфракрасного излучения.

GaAs, InSb применяются для изготовления туннельных диодов. По сравнению с германиевыми диодами, приборы из арсенида галлия характеризуются более высокой рабочей температурой, а диоды из антимонида индия обладают лучшими частотными свойствами при низких температурах.

Прогресс в технологии арсенида галлия, достигнутый за последние годы, открыл широкие перспективы применения этого материала для создания полевых транзисторов и быстродействующих интегральных схем. По сравнению с кремнием GaAs является более технологически сложным материалом. Однако совершенствование технологии различных процессов, разработка новых методов осаждения защитных слоев позволяют реализовать возможности GaAs в повышении степени интеграции и быстродействия ИМС.

Твердые растворы на основе соединений типа АIIIВV

Твердые растворы позволяют существенно расширить по сравнению с элементарными полупроводниками и ПП соединениями набор электрофизических параметров, определяющих возможности применения материалов в конкретных полупроводниковых приборах.

Особый интерес к твердым растворам обусловлен возможностью плавного управления шириной запрещенной зоны полупроводников путем изменения их компонентного состава.

Твердые растворы открывают широкие возможности создания гетеропереходов и приборов на их основе. Под гетеропереходом понимают контакт двух полупроводников с различной шириной запрещенной зоны. Решающим критерием при выборе материала контактной пары является соответствие периодов их кристаллических решеток и температурных коэффициентов их линейного расширения

Полупроводниковые соединения типа АIIВVI

К соединениям этого типа относят халькогениды цинка, кадмия и ртути. Среди них можно выделить сульфиды, селениды и теллуриды. Но окислы этих металлов сюда не входят.

С ростом атомной массы во всех этих рядах уменьшается ширина запрещенной зоны и температура плавления соединений. Одновременно возрастает подвижность носителей заряда.

Из всех соединений типа АIIВVI по масштабам применения выделяют сульфид цинка ZnS и сульфид кадмия CdS. Первый является основой для многих промышленных люминофоров, второй широко используется для изготовления фоторезисторов.

Помимо сульфида кадмия для изготовления фоторезисторов, чувствительных к видимому излучению, испльзуют пленки и спеченные порошкообразные соли селенида кадмия CdSe.

Узкозонные полупроводники типа АIIВVI представляют интерес для создания приемников ИК-излучения. Пленки из селенида и теллурида ртути применяют для изготовления высокочувствительных датчиков Холла. Монокристаллы этих соединений используют в качестве рабочего тела полупроводниковых лазеров, возбуждаемых электрическим пучком.

Полупроводниковые соединения типа АIVВVI
Среди полупроводниковых соединений этого типа наиболее изученными являются халькогениды свинца (PbS, PbSe, PbTe). Как узкозонные полупроводники они применяются в качестве детекторов ИК-излучений.

Большой научный и практический интерес представляют твердые растворы на основе теллуридов свинца и олова. Одна из главных причин повышенного интереса к этим материалам связана с использованием их для изготовления фотоприемников с высокой спектральной чувствительностью в диапазоне "атмосферного окна" 8 - 14 мкм, которое соответствует максимуму излучения абсолютно черного тела при 300К.

Перспективно использование твердых растворов для инжекционных лазеров в спектральном диапазоне до 30 мкм.

Перейти к разделу: 3. Полупроводниковые диоды

Объявление

Статистика