«Золотое сечение» в скульптуре и архитектуре
Правило «золотого сечения» в скульптуре
Скульптурное сооружение, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей, их подвиги и деяния.
Ещё в древности основу скульптуры составляла теория пропорций. Отношения частей человеческого тела связывались с формулой золотого сечения.
Пропорции «золотого сечения» создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях.
Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении «золотого сечения».
Великий древнегреческий скульптор Фидий часто использовал «золотое сечение» в своих произведениях. Самая знаменитая статуя Зевса Олимпийского и Афины Парфенос (которые считались одним из чудес света).
Было проведено большое число измерений на помещённых в журналах крупных портретах мужчин и женщин, на многих их низ указанные отношения представляют «золотое сечение».
«Золотое сечение» в архитектуре
Одним из красивейших произведений древнегреческой архитектуры является Парфенон (5 в. До н. э.).
Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. Выступы сделаны целиком из квадратов пентилейского мрамора. Благородство, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон(синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада.
Дом Пашкова
Одним из шедевров архитектуры в Москве – дом Пашкова - является одним из наиболее совершенных произведений архитектуры В. Баженова. Прекрасное творение вошло в ансамбль центра современной Москвы, обогатило его.
Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 г. При восстановлении здание приобрело более массивные формы. Не сохранилась и внутренняя планировка здания, о которой дают представления только чертеж нижнего этажа.
Баженов говорил: «Архитектура – главнейшее имеет три предмета; красоту, спокойность и прочность здания… К достижению сего служит руководством здание пропорций, перспектива, механика или вообще физика, а всем им общим является рассудок».
«Золотое сечение» в живописи
«Золотое сечение» в живописи, проглядывалось в работах и творчестве великого Леонардо да Винчи. Он говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды».
Одним из таких портретов является Монны Лизы (Джоконды), долгие годы привлекают внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует много версий об истории этого портрета. Одна из них:
Однажды Леонардо да Винчи получил заказ от банкира Франческо де ле Джокондо написать портрет молодой женщины, жены банкира, Монны Лизы. Женщина не была красива, но в ней привлекало простота и естественность облика. Леонардо согласился писать портрет. Его модель была печальной и грустной, но Леонардо рассказал ей сказку, услышав которую, она стала живой и интересной.
«Золотое сечение» в природе
«Золотое сечение» - один из основополагающих принципов природы. Красота природных форм во взаимодействии двух физических сил – тяготения и инерции. Золотое сечение – символ этого взаимодействия, поскольку диктуемое ею отношение большей части целого к самому целому выражает основные моменты живого роста: стремительный рост побега до зрелости и замедленный рост до момента цветения, когда достигшее полной силы растение готовится дать жизнь новому побегу.
Одним из первых проявления золотого сечения в природе подметил немецкий математик и астроном Иоганн Кеплер (1570-1630 гг.). С ХVII в. наблюдение математических закономерностей в ботанике и зоологии стали быстро накапливаться.
В 1850 г. немецкий ученый А. Цейзинг открыл так называемый закон углов, согласно которому средняя величина углового отклонения ветки растения равно примерно 138 градусов.
Допустим, что две соседние ветки растения исходят из одной точки (на самом деле это не так: в реальности ветви располагаются выше или ниже друг друга). Обозначим одну из них через ОА, другую через ОВ. Угол между лучами – ветками обозначим через а, а угол, дополняющий его до 360 , - через Р.
Составим золотую пропорцию деления полного угла, считая, что угол К – большая часть этой величины.
Получаем квадратное уравнение: Р² + 360 – Р360² =0. Положительный корень Р= -180+√180²+360²= 180·±√5= 180·1,236= 222,48.
а=360°-222,48°=137,52°≈138°.
Таким образом, величина среднего углового отклонения ветки соответствует меньшей из двух частей, на которые делится полный угол при золотом сечении.