Виды правильных многогранников
1.1.2. Виды правильных многогранников
Тетраэдр в переводе с древнегреческого четырёхгранник. Это простейший многогранник, гранями которого являются четыре треугольника.
У тетраэдра 4 грани, 4 вершины и 6 рёбер. Грани – равносторонние треугольники. В каждой его вершине сходится три угла. Сумма этих углов при каждой вершине равна 180º.
Октаэдр
В переводе с греческого οκτάεδρον (οκτώ - «восемь» и έδρα — «основание») — многогранник с восемью гранями. Грани правильного октаэдра — восемь равносторонних треугольников. Октаэдр имеет 6 вершин и 12 рёбер. В каждой вершине сходятся 4 треугольника, поэтому сумма углов при каждой вершине октаэдра составляет 240°.
Куб в переводе с древне-греческого κύβος2 или правильный гексаэдр («правильный шестигранник» от древнегреческого ἑξάς— «шесть» и ἕδρα — «седалище, основание») — правильный многогранник, каждая грань которого представляет собой квадрат.
Число сторон у грани – 4; общее число граней – 6; число рёбер примыкающих к вершине – 3; общее число вершин – 8; общее число рёбер – 12. Сумма углов при каждой вершине 90º + 90º + 90º = 270º
Додекаэдр от древнегреческого δώδεκα — «двенадцать» и εδρον — «грань». Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями.
Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Сумма углов при каждой вершине 108º + 108º + 108º = 324º
Икосаэдр от древнегреческого εἴκοσι «двадцать»; ἕδρον «сидение», «основание»— правильный выпуклый многогранник, двадцатигранник. Каждая из 20 граней представляет собой равносторонний треугольник.
Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм. Леонардом Эйлером в 1750 году была впервые выведена формула связывающая число вершин (В), граней (Г) и рёбер (Р) любого выпуклого многогранника простым соотношением: В + Г = Р + 2.
№ | Вершины | Ребра | Грани | Формула Эйлера | |
1 | Тетраэдр | 4 | 6 | 4 | 4+4=6+2 |
2 | Октаэдр | 6 | 12 | 8 | 6+8=12+2 |
3 | Куб | 8 | 12 | 6 | 8+6=12+2 |
4 | Додэкаэдр | 20 | 30 | 12 | 20+12=30+2 |
5 | Икосаэдр | 12 | 30 | 20 | 12+20=30+2 |
Правильные многогранники с древних времен привлекали к себе внимание ученых, архитекторов, художников. Их поражала красота, совершенство, гармония этих многогранников.
Леонардо да Винчи увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал книгу монаха Луки Пачоли «О божественной пропорции».
Другим знаменитым художником, также увлекавшимся геометрией был Альбрехт Дюрер. В своей гравюре «Меланхолия» он дал перспективное изображение додекаэдра.
Немецкий астроном и математик Иоганн Кеплер в своей работе, используя правильные многогранники, вывел принцип, которому подчиняются формы и размеры планет Солнечной системы. Такая модель получила модель «Космического кубка» Кеплера.
Знаменитая картина Сальвадора Дали «Тайная вечеря» содержит перспективное изображение правильного додекаэдра.