Обучающие программы и исследовательские работы учащихся
Помогаем учителям и учащимся в обучении, создании и грамотном оформлении исследовательской работы и проекта.

Объявление

Наш баннер

Сайт Обучонок содержит исследовательские работы и проекты учащихся, темы творческих проектов по предметам и правила их оформления, обучающие программы для детей.
Будем благодарны, если установите наш баннер!
Баннер сайта Обучонок
Код баннера:
<a href="https://obuchonok.ru/" target="_blank"> <img src="https://obuchonok.ru/banners/banob2.gif" width="88" height="31" alt="Обучонок. Исследовательские работы и проекты учащихся"></a>
Все баннеры...
Тематика: 
Физика
Автор работы: 
Куаев ХазретРусланович
Руководитель проекта: 
Любавина Светлана Анатольевна
Учреждение: 
ГАПОУ РС(Я) МРТК филиал «Удачнинский»
Класс: 
11

В учебном исследовательском проекте по физике на тему «Оптика и оптические явления в природе» автор рассказывает о принципах оптических явлений и приводит их примеры из природы, например, сияние алмазов и самоцветов, радуга и полярные сияния, а также изучает роль оптики в развитии современной науки физики.

Подробнее о работе:


В рамках исследовательской работы по физике об оптике и оптических явлениях автор рассмотрел имеющиеся теоретические данные и дал определение понятия "оптика" с точки зрения природных оптических явлений и законов физики, привел справочную информацию из истории оптики, перечислил и охарактеризовал все виды оптики, известные на сегодняшний день.

В ходе учебного исследовательского проекта по физике «Оптика и оптические явления в природе» учащийся выяснил, какова роль оптики в развитии современной физики, рассмотрел принцип отражения предмета, определил, какое отношение защитные стекла имеют к оптике, и какими свойствами они обладают, изучил теорию о полном отражении света на примере самых распространенных природных оптических явлениях.

Оглавление

Введение
1. Виды оптики.
2. Исторический очерк оптики.
3. Роль оптики в развитии современной физики.
4. Предмет и его отражение.
5. Защитные стёкла.
6. Полное отражение света.
7. Алмазы и самоцветы.
8. Радуга.
9. Полярные сияния.

Виды оптики


Оптика разделяется на геометрическую, физическую и физиологическую.

Геометрическая оптика оставляет в стороне вопрос о природе света, исходит из эмпирических законов его распространения и использует представление о световых лучах, преломляющихся и отражающихся на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде.

Её задача - математически исследовать ход световых лучей в среде с известной зависимостью преломления показателя n от координат либо, напротив, найти оптические свойства и форму прозрачных и отражающих сред, при которых лучи проходят по заданному пути. Методы геометрической Оптика позволяют изучить условия формирования оптического изображения объекта как совокупности изображений отд. его точек и объяснить многие явления, связанные с прохождением оптического излучения в различных средах (например, искривление лучей в земной атмосфере вследствие непостоянства ее показателя преломления, образование миражей, радуг и т.п.).

Наибольшее значение геометрическая Оптика (с частичным привлечением волновой Оптика, см. ниже) имеет для расчёта и конструирования оптических приборов - от очковых линз до сложных объективов и огромных астрономических инструментов. Благодаря развитию и применению вычислительной математики методы таких расчётов достигли высокого совершенства, и сформировалось отдельное направление поучившее название вычислительной Оптика.

По существу отвлекается от физической природы света и фотометрия, посвященная главным образом измерению световых величин, Фотометрия представляет собой методическую основу исследования процессов испускания, распространения и поглощения излучения по результатам его действия на приёмники излучения.

Ряд задач фотометрии решается с учётом закономерностей восприятия человеческим глазом света и его отдельных цветовых составляющих. Изучением этих закономерностей занимается физиологическая Оптика, смыкающаяся с биофизикой и психологией и исследующая зрительный анализатор (от глаза до коры головного мозга) и механизмы зрения.

Физическая Оптика рассматривает проблемы, связанные с природой света и световых явлений. Утверждение, что свет есть поперечные электромагнитные волны, основано на результатах огромного числа экспериментальных исследований дифракции света, интерференции света, поляризации света и распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия).

Совокупность явлений, в которых проявляется волновая природа света, изучается в крупном разделе физической Оптика - волновой Оптика Её математическим основанием служат общие уравнения классической электродинамики - Максвелла уравнения. Свойства среды при этом характеризуются макроскопическими материальными константами - диэлектрической проницаемостью e и магнитной проницаемостью m, входящими в уравнения Максвелла в виде коэффициентов.

Феноменологическая волновая Оптика, оставляющая в стороне вопрос о связи величин e и m (обычно известных из опыта) со структурой вещества, позволяет объяснить все эмпирические законы геометрической Оптика и установить границы её применимости. В отличие от геометрической, волновая Оптика даёт возможность рассматривать процессы распространения света не только при размерах формирующих или рассеивающих световые пучки систем >> l (длины волны света) но и при любом соотношении между ними.

Во многих случаях решение конкретных задач методами волновой оптики оказывается чрезвычайно сложным. Поэтому получила развитие квазиоптика (особенно применительно к наиболее длинноволновому участку спектра оптического излучения и смежному с ним т. н. субмиллиметровому под диапазону радиоизлучения) в которой процессы распространения, преломления и отражения описываются геометрооптически но в которой при этом нельзя пренебрегать и волновой природой излучения.

Геометрический и волновой подходы формально объединяются в геометрической теории дифракции, в которой дополнительно к падающим, отражённым и преломлённым лучам геометрической Оптика постулируется существование различного типа дифрагированных лучей.

Исторический очерк оптики


Оптика - одна из древнейших наук, тесно связанная с потребностями практики на всех этапах своего развития. Прямолинейность распространения света была известна народам Месопотамии за 5 тыс. лет до н. э. и использовалась в Древнем Египте при строительных работах. Пифагор в 6 в. до н. э. высказал близкую к современной точку зрения, что тела становятся видимыми благодаря испускаемым ими частицам.

Аристотель (4 в. до н. э.) полагал, что свет есть возбуждение среды, находящейся между объектом и глазом. Он занимался атмосферной Оптика и считал причиной появления радуг отражение света каплями воды. В том же веке в школе Платона были сформулированы два важнейших закона геометрической Оптика - прямолинейность лучей света и равенство углов их падения и отражения.

Евклид (3 в. до н. э.) в трактатах по Оптика рассматривал возникновение изображений при отражении от зеркал. Главный вклад греков, явившийся первым шагом в развитии Оптика как науки, состоит не в их гипотезах о природе света, а в том, что они нашли законы его прямолинейного распространения и отражения (катоптрика) и умели ими пользоваться.

Второй важный шаг состоял в понимании законов преломления света (диоптрика) и был сделан лишь много веков спустя. Диоптрические опыты описывались Евклидом и Клеомедом (1 в. н. э.), о применении стеклянных шаров как зажигательных линз упоминали Аристофан (около 400 до н. э.) и Плиний Старший (1 в. н. э.), а обширные сведения о преломлении были изложены Птолемеем (130 н. э.); важность этого вопроса тогда состояла главным образом в его непосредственной связи с точностью астрономических наблюдений.

Однако законы преломления не удалось установить ни Птолемею, ни арабскому учёному Ибн аль-Хайсаму, написавшему в 11 в. знаменитый трактат по Оптика, ни даже Г. Галилею и И. Кеплеру. Вместе с тем в средние века уже хорошо были известны эмпирические правила построения изображений, даваемых линзами, и начало развиваться искусство изготовления линз.

В 13 в. появились очки. По некоторым данным, около 1590 З. Янсен (Нидерланды) построил первый двухлинзовый микроскоп. Первые же наблюдения с помощью телескопа, изобретённого Галилеем в 1609, принесли ряд замечательных астрономических открытий. Однако точные законы преломления света были экспериментально установлены лишь около 1620 В.

Снеллиусом и Р. Декартом, изложившим их в «Диоптрике» (1637). Этим (и последующей формулировкой Ферма принципа) был завершен фундамент построения и практического использования геометрической Оптика

Дальнейшее развитие Оптика связано с открытиями дифракции и интерференции света (Ф. Гримальди; публикация 1665) и двойного лучепреломления (датский учёный Э. Бартолин, 1669), не поддающихся истолкованию в рамках геометрической Оптика, и с именами И. Ньютона, Р. Гука и Х. Гюйгенса.

Ньютон обращал большое внимание на периодичность световых явлений и допускал возможность волновой их интерпретации, но отдавал предпочтение корпускулярной концепции света, считая его потоком частиц, действующих на эфир (этот термин для обозначения наделённой механическими свойствами среды - переносчика света ввёл Декарт) и вызывающих в нём колебания.

Движением световых частиц через эфир переменной (вследствие колебаний) плотности и их взаимодействием с материальными телами, по Ньютону, обусловлены преломление и отражение света, цвета тонких плёнок, дифракция света и его дисперсия (Ньютоном же впервые подробно изученная). Ньютон не считал возможным рассматривать свет как колебания самого эфира, т.к. в то время на этом пути не удавалось удовлетворительно объяснить прямолинейность световых лучей и поляризацию света (впервые осознанную именно Ньютоном, хотя и следовавшую из классических опытов Гюйгенса по двойному лучепреломлению).

Роль оптики в развитии физики


Роль оптики в развитии физики. Многие поколения ученых, пытаясь найти, что такое необыкновенный свет, ставили только тонко достаточно задуманные и в совершенстве немного исполненные опыты. На основании этих опытов создавались новейшие особенно физические теории, которые касались не лишь оптики, да и всех без сомнения разделов физики.

Более 2-х тыс. годов назад был установлен жестокий закон о немного прямолинейном распространении света. Последующий значительный шаг сделал Ньютон: он доказал, что призма разлагает белоснежный необыкновенный свет на «простые» цвета.

Френель обосновал почти волновую теорию света. Максвелл доказал, что световая страшная волна это в частности совершенно электромагнитные колебания. Ученые, исследуя излучения совершенно накаленных тел и весьма линейчатые диапазоны паров и газов, сделали квантовую теорию базу всей на самом деле весьма современной немного теоретической физики. В наше жаркое время невероятная энергия света играет огромную колоссальная роль и в технике, в особенности в немного измерительных устройствах.

Во почти всех вариантах никакими фактически иными методами нельзя получить такие четкие результаты измерений, как при помощи световых волн. Еще совершенно не так давно почти все физики считали, что в науке, изучающей необыкновенный свет, в оптике навряд ли можно ждать практически революционные открытия: ведь данной науке наиболее 2-ух тыщ лет. Но это, наконец, естественно не так.

Еще почти все в науке о свете осталось неясным и просит тщательных и долгих практически исследований. Некие ученые считают, что «свет самое реально черное необыкновенное место в физике»; пожалуй, они правы. В одна тысяча девятьсот шестидесятом г. оптика опять вторглась во все, наконец, разделы физики.

Сделаны новейшие источники света лазеры, необычайная яркость луча которых в сотки миллионов раз превосходят необычайная яркость Солнца. Уже сейчас ученым абсолютно ясно: в чрезвычайно достаточно недалеком будущем лазеры окажут большущее мощное влияние на значительное развитие науки и техники. Вечно юная настоящая наука о свете снова оказалась на практически переднем крае науки.

Предмет и его отражение

То, что отраженный в стоячей воде пейзаж не отличается от реального, а только перевернут “вверх ногами” далеко не так.

Если человек посмотрит поздним вечером, как отражаются в воде светильники или как отражается берег, спускающийся к воде, то отражение покажется ему укороченным и совсем “исчезнет”, если наблюдатель находится высоко над поверхностью воды. Также никогда нельзя увидеть отражение верхушки камня, часть которого погружена в воду.

Пейзаж видится наблюдателю таким, как если бы на него смотрели из точки, находящейся на столько глубже поверхности воды, насколько глаз наблюдателя находится выше поверхности. Разница между пейзажем и его изображением уменьшается по мере приближения глаза к поверхности воды, а так же по мере удаления объекта.

Часто людям кажется, что отражение в пруду кустов и деревьев отличается большей яркостью красок и насыщенностью тонов. Эту особенность также можно заметить, наблюдая отражение предметов в зеркале. Здесь большую роль играет психологическое восприятие, чем физическая сторона явления.

Рама зеркала, берега пруда ограничивают небольшой участок пейзажа, ограждая боковое зрение человека от избыточного рассеянного света, поступающего со всего небосвода и ослепляющего наблюдателя, то есть он смотрит на небольшой участок пейзажа как бы через темную узкую трубу. Уменьшение яркости отраженного света по сравнению с прямым облегчает людям наблюдение неба, облаков и других яркоосвещенных предметов, которые при прямом наблюдении оказывается слишком ярким для глаза.

Отражают свет любые поверхности, не только гладкие. Именно благодаря этому мы видим все тела. Поверхности, которые отражают большую часть светового потока, выглядят светлыми или белыми. Поверхности, которые поглощают большую часть света, выглядят тёмными или черными. Если пучок параллельных световых лучей падает на шершавую поверхность (даже если шероховатости микроскопически малы, как на поверхности листка бумаги) (рисунок справа) свет отражается в различных направлениях, то есть отраженные лучи не будут параллельными, поскольку углы падения лучей на неровности поверхности разные.

Такое отражение света называют рассеянным, или диффузным. Закон отражения выполняется и в этом случае, но на каждом маленьком участке поверхности. Из-за диффузного отражения во всех направлениях обычный предмет можно наблюдать под разными углами. Стоит сдвинуть голову в сторону, как из каждой точки предмета в глаз будет попадать другой пучок отраженных лучей. Но если узкий пучок света падает на зеркало, то вы увидите его только в том случае, если глаз занимает положение, для которого выполняется отражения. Этим и объясняются необычные свойства зеркал.

Защитные стёкла


Обычные оконные стекла частично пропускают тепловые лучи. Это хорошо для использования их в северных районах, а также для парников. На юге же помещения настолько перегреваются, что работать в них тяжело.

Защита от Солнца сводится либо к затемнению здания деревьями, либо к выбору благоприятной ориентации здания при перестройке. И то и другое иногда бывает затруднительным и не всегда выполнимым.

Для того чтобы стекло не пропускало тепловые лучи, его покрывают тонкими прозрачными пленками окислов металлов. Так, оловянно-сурьмяная пленка не пропускает более половины тепловых лучей, а покрытия содержащие окись железа, полностью отражают ультрафиолетовые лучи и 35-55% тепловых.

Растворы пленкообразующих солей наносят из пульверизатора на горячую поверхность стекла во время его тепловой обработки или формования. При высокой температуре соли переходят в окиси, крепко связанные с поверхностью стекла.

Подобным образом изготовляют стекла для светозащитных очков.

Полное отражение света

При падении света на границу двух сред световой луч, как об этом уже упоминалось, частично преломляется, а частично отражается от нее. При a>a0преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.

Для наблюдения полного отражения можно использовать стеклянный полуцилиндр с матовой задней поверхностью. Полуцилиндр закрепляют на диске так, чтобы середина плоской поверхности полуцилиндра совпадала с центром диска. Узкий пучок света от осветителя направляют снизу на боковую поверхность полуцилиндра перпендикулярно его поверхности. На этой поверхности луч не преломляется. На плоской поверхности луч частично преломляется и частично отражается. Отражение происходит в соответствии с законом отражения, a преломление – в соответствии с законом преломления (1.4).

Если увеличивать угол падения, то можно заметить, что яркость (и следовательно, энергия) отраженного пучка растет, в то время как яркость (энергия) преломленного пучка падает. Особенно быстро убывает энергия преломленного пучка, когда угол преломления приближается к 90°. Наконец, когда угол падения становится таким, что преломленный пучок идет вдоль границы раздела, доля отраженной энергии составляет почти 100%. Повернем осветитель, сделав угол паденияaбольшим a0. Мы увидим, что преломленный пучок исчез и весь свет отражается от границы раздела, т. е. происходит полное отражение света.

Большая интенсивность света показана большей толщиной линии, изображающей соответствующий луч.

Алмазы и самоцветы


В Кремле существует выставка алмазного фонда России.

В зале свет слегка приглушен. В витринах сверкают творения ювелиров. Здесь можно увидеть такие алмазы, как «Орлов», «Шах», «Мария», «Валентина Терешкова».

Секрет прелестной игры света в алмазах, заключается в том, что этот камень имеет высокий показатель преломления (n=2,4173) и вследствие этого малый угол полного внутреннего отражения (α=24˚30′) и обладает большей дисперсией, вызывающей разложение белого света на простые цвета.

Кроме того, игра света в алмазе зависит от правильности его огранки. Грани алмаза многократно отражают свет внутри кристалла. Вследствие большой прозрачности алмазов высокого класса свет внутри них почти не теряет своей энергии, а только разлагается на простые цвета, лучи которых затем вырываются наружу в различных, самых неожиданных направлениях. При повороте камня меняются цвета, исходящие из камня, и кажется, что сам он является источником многих ярких разноцветных лучей.

Встречаются алмазы, окрашенные в красный, голубоватый и сиреневый цвета. Сияние алмаза зависит от его огранки. Если смотреть сквозь хорошо ограненный водяно-прозрачный бриллиант на свет, то камень кажется совершенно непрозрачным, а некоторые его грани выглядят просто черными. Это происходит потому, что свет, претерпевая полное внутреннее отражение, выходит в обратном направлении или в стороны.

Если смотреть на верхнюю огранку со стороны света, она сияет многими цветами, а местами блестит. Яркое сверкание верхних граней бриллианта называют алмазным блеском. Нижняя сторона бриллианта снаружи кажется как бы посеребренной и отливает металлическим блеском.

Наиболее прозрачные и крупные алмазы служат украшением. Мелкие алмазы находят широкое применение в технике в качестве режущего или шлифующего инструмента для металлообрабатывающих станков. Алмазами армируют головки бурильного инструмента

Полярные сияния

Полярные сияния возникают вследствие бомбардировки верхних слоёв атмосферы заряженными частицами, движущимися к Земле вдоль силовых линий геомагнитного поля из области околоземного космического пространства, называемой плазменным слоем. Проекция плазменного слоя вдоль геомагнитных силовых линий на земную атмосферу имеет форму колец, окружающих северный и южный магнитные полюса (авроральные овалы).

Выявлением причин, приводящим к высыпаниям заряженных частиц из плазменного слоя, занимается космическая физика. Экспериментально установлено, что ключевую роль в стимулировании высыпаний играет ориентация межпланетного магнитного поля и величина давления плазмы солнечного ветра.

В очень ограниченном участке верхней атмосферы сияния могут быть вызваны низко энергичными заряженными частицами солнечного ветра, попадающими в полярную ионосферу через северный и южный полярные каспы. В северном полушарии каспенные сияния можно наблюдать над Шпицбергеном в околополуденные часы.

Заключение

Я – Куаев Хазрет написал реферат по физике на тему Оптика и Оптические явления в природе, так как мне эта тема показалась очень интересной и увлекательной , ведь оптика окружает нас везде. Написав, этот реферат я многое узнал – что такое оптика, какие оптические явления бывают в природе и.т.д.

Этот реферат открыл во мне новые интересы к физике как увлекательной науке, которая затягивает в себя необычными явлениями и сложными опытами. Из этого реферата я извлек не только пользу, но и совершил интересное путешествие в мир Оптики.

Литература

  1. Википедия
  2. Учебник по физике 11 класс. Издательство Просвещение.
  3. Интернет-ресурсы.


Если страница Вам понравилась, поделитесь в социальных сетях:

Объявление

Статистика