Обучающие программы и исследовательские работы учащихся
Помогаем учителям и учащимся в обучении, создании и грамотном оформлении исследовательской работы и проекта.

Объявление

Наш баннер

Сайт Обучонок содержит исследовательские работы и проекты учащихся, темы творческих проектов по предметам и правила их оформления, обучающие программы для детей.
Будем благодарны, если установите наш баннер!
Баннер сайта Обучонок
Код баннера:
<a href="https://obuchonok.ru/" target="_blank"> <img src="https://obuchonok.ru/banners/banob2.gif" width="88" height="31" alt="Обучонок. Исследовательские работы и проекты учащихся"></a>
Все баннеры...

Оглавление

Введение

  1. Периоды истории вычислительной техники
  2. Домеханический период
  3. Механический период
  4. Электромеханический период
  5. Электронный период
  6. Будущее компьютеров
  7. Молекулярные компьютеры
  8. Биокомпьютеры
  9. Оптические компьютеры
  10. Квантовые компьютеры

Заключение
Список использованных источниов

Введение


Актуальность данной темы в том, что компьютеры появились очень давно в нашем мире, но только в последнее время их начали так усиленно использовать во многих отраслях человеческой жизни. Ещё десять лет назад было редкостью увидеть какой-нибудь персональный компьютер — они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. А теперь?

Теперь в каждом третьем доме есть компьютер, который уже глубоко вошёл в жизнь самих обитателей дома.
Сама идея создания искусственного интеллекта появилась очень давно, но только в 20 столетии её начали приводить в исполнение. Сначала появились огромные компьютеры, которые были зачастую размером с огромный дом.

Использование таких махин, как вы сами понимаете, было не очень удобно. Но что поделаешь? Но мир не стоял на одном месте эволюционного развития — менялись люди, менялась их среда обитания, и вместе с ней менялись и сами технологии, всё больше совершенствуясь. И компьютеры становились всё меньше и меньше по своим размерам, пока не достигли сегодняшних размеров.

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние, которого на развитие научно-технического прогресса трудно переоценить. Области применения ЭВМ непрерывно расширяются. Этому в значительной степени способствует распространение персональных ЭВМ, и особенно микроЭВМ.

За время, прошедшее с 50-х годов, цифровая ЭВМ превратилась из «волшебного», но при этом дорогого, уникального и перегретого нагромождения электронных ламп, проводов и магнитных сердечников в небольшую по размерам машину - персональный компьютер - состоящий из миллионов крошечных полупроводниковых приборов, которые упакованы в небольшие пластмассовые коробочки.

Объект: компьютер.
Предмет: будущее компьютеров.
Цель работы: рассмотреть будущее компьютеров.
Задачи:

  • Рассмотреть периоды истории вычислительной техники;
  • Выявить будущее компьютеров.

Периоды истории вычислительной техники

  1. В истории вычислительной техники выделяют четыре периода:
  2. Домеханический (с древних времен до середины XVII в.).
  3. Механический (с середины XVII в. до конца XIX в.).
  4. Электромеханический (с конца XIX в. до 40-х гг. XX в.).
  5. Электронный (с 40-х гг. XX в. по настоящее время).

Домеханический период


Понятие числа возникло задолго до появления письменности. Люди учились считать в течение многих веков, передавая и обогащая из поколения в поколение свой опыт.

С древних времен перед человечеством стояли задачи, требовавшие все возрастающих объемов вычислений. Наряду с развитием теории ученые работали и над проблемой автоматизации вычислений. Для вычислений использовались всякие средства, которые имели различные возможности и назывались по-разному.

К примитивным средствам можно отнести: счет на пальцах, счет на камнях, насечки на дереве или кости (бирки), узелковое письмо.

Первым и основным счетным приспособлением древних народов считается абак. У разных народов он отличался по своему исполнению. Потом появились счетные таблицы. На рубеже XVI–XVII вв. появляется русский абак – счеты.

После изобретения абака многие изобретатели и естествоиспытатели пытались придумать приспособления, способные облегчить процесс вычислений. К первым приборам можно отнести «счетные палочки (костяшки) Непера». На этом инструменте можно было извлекать квадратные и кубические корни, умножать и делить большие числа.

Второе изобретение – изобретение Непером логарифмов. Позже профессор астрономии Грэшемского колледжа Эдмунд Гюнтер построил логарифмическую шкалу. В конце 20-х гг. XVII в. была изобретена логарифмическая линейка.

Механический период


В течение почти 500 лет цифровая вычислительная техника сводилась к простейшим устройствам для выполнения арифметических операций над числами. Основой практически всех изобретенных за пять столетий устройств было зубчатое колесо, рассчитанное на фиксацию 10 цифр десятичной системы счисления.

Первые изобретения этого периода – машины Леонардо да Винчи, В. Шиккарда. О них ничего не было известно современникам, поэтому первой вычислительной машиной считается суммирующая машина Б. Паскаля – «Паскалина», выполняющая операции сложения и вычитания. Сложную в реализации операцию вычитания Паскаль заменил сложением с дополнением вычитаемого. Этот подход используется в современных ЭВМ.

Счетная машина Г. В. Лейбница позволяла складывать, вычитать, умножать, делить, извлекать квадратные корни. В основе множительного устройства этой машины лежит ступенчатый валик Лейбница, надолго определивший принципы построения счетных машин.

В ЭВМ, появившихся более двух веков спустя, устройство, выполняющее арифметические операции (те же самые, что и «арифметический прибор» Г. Лейбница), получило название арифметического. Позднее, по мере добавления ряда логических действий, его стали называть арифметико-логическим (АЛУ). Оно стало основным устройством современных компьютеров.

Арифмометры К. Томаса, В. Однера, П. Л. Чебышева с некоторыми усовершенствованиями использовались до недавнего времени 80-х гг. прошлого века.
Самыми значительными изобретениями этого периода, несомненно, являются разностная и аналитическая машины. Ч. Бэббидж разработал основные принципы построения вычислительных машин, которые были реализованы в современных ЭВМ.

Это принцип программного управления вычислительным процессом, использование перфокарт для управления работой вычислительной машины, введение команды условного перехода, принцип разделения информации на команды и данные.

К сожалению, эти машины не могли быть построены по технологиям XIX века.
Линия арифмометров перешла затем в линию клавишных вычислительных машин. Усовершенствование механического арифмометра продолжалось до 70-х гг. XX в. Были разработаны многочисленные конструкции с ручным и электрическим приводом. С заменой механических счетных устройств электронными линия механических арифмометров перешла в линию электронных калькуляторов, а затем слилась с линией персональных ЭВМ.

Электромеханический период

В истории вычислительной техники этот период явился наименее продолжительным – с 1888 до 1945 г. Успехи электроники и электротехники и необходимость проведения массовых расчетов в различных областях и развитие электротехники привели к созданию электромеханической вычислительной техники. Кроме того, были введены еще очень важные принципы и понятия – двоичная система счисления и математическая логика Джорджа Буля.

Самым известным изобретением электромеханического периода является статистический табулятор, построенный американцем Германом Холлеритом для ускорения обработки результатов переписи населения, которая проводилась в США в 1890 г.

Основными устройствами табулятора были:

  • вычислительный механизм, в котором использовались реле;
  • перфоратор;
  • сортировальная машина.

Г. Холлерит стал «отцом-основателем» целого направления вычислительной техники – счетно-перфорационного. На базе созданных им устройств создавались целые машиносчетные станции для механизированной обработки информации, послужившие прообразом грядущих вычислительных центров.
В 1924 г. появилась всемирно известная фирма International Business Machines Corp (IBM).

С точки зрения преодоления различных инженерных трудностей и применения целого ряда прогрессивных принципов (программное управление, двоичная система счисления, операции условного перехода и т.д.) такие машины, как Z-3 и «Марк-1», были выдающимися достижениями своего времени. Однако вычислительные машины с таким быстродействием не могли стать основой для серьезных изменений в области автоматизации вычислительных работ.

Вычисления они выполняли чрезвычайно медленно, так как были основаны на медленно работающих элементах. Хотя время срабатывания реле и составляет 0,1 с, но в двоичной системе каждое действие требует во много раз больше тактов работы, чем в десятичной.

Только появление электронных вычислительных машин привело к постепенному закату эры электромеханических средств вычисления, развивавшихся вплоть до середины 50-х гг. прошлого века. Но успешно апробированные Г. Холлеритом источники ввода информации на перфокартах широко использовались в нескольких поколениях первых ЭВМ.

Электронный период

В течение механического, электромеханического и в начале электронного периода развития цифровая вычислительная техника оставалась областью техники, научные основы которой только закладывались.
Предпосылки возникновения электронной вычислительной техники:

1. Математические предпосылки:
• двоичная система счисления, которую Г. В. Лейбниц предложил использовать для организации вычислительных машин,
• алгебра логики, разработанная Дж. Булем.
2. Алгоритмические предпосылки – абстрактная машина Тьюринга, использованная для доказательства возможности машинной реализации любого алгоритма, имеющего решение.
3. Технические предпосылки – развитие электроники.
4. Теоретические предпосылки – результаты работ К. Шеннона, соединившего электронику и логику.

Электронно-вычислительные машины появились, когда возникла острая необходимость в очень трудоемких и точных расчетах, особенно в таких областях, как атомная физика, теория динамик
К началу 40-х гг., т.е. ко времени появления первых автоматических вычислительных машин, электронные устройства получили уже значительное развитие и распространение.

Они широко применялись во многих областях техники, прежде всего радиотехники. Зарождались телевидение и радиолокация, развивалась электронная контрольно-измерительная техника.
Норберт Винер – известный американский математик сформировал ряд требований к вычислительным машинам:

  • они должны состоять из электронных ламп (чтобы обеспечить достаточное быстродействие);
  • должна использоваться более экономичная двоичная, а не десятичная система счисления;
  • машина сама должна корректировать свои действия, в ней необходимо выработать способность к самообучению.

С переходом на безынерционные электронные элементы в вычислительной технике наступил существенный прогресс. Вычислительные машины, построенные на электронных триггерных схемах, использующих вакуумные триоды, открыли новое направление в вычислительной технике, их стали называть «электронные вычислительные машины».

Первые разработки электронного периода:
Машина Дж. Атанасова. Первой попыткой создания ЭВМ была разработка профессора федерального колледжа Айовы Джона Атанасова. В 1937 г. он сформулировал, а в 1939 г. опубликовал окончательный вариант своей концепции современной вычислительной машины:

  • в своей работе вычислительная машина будет использовать электричество и достижения электроники;
  • её работа будет основана на двоичной, а не на десятичной системе счисления;
  • основой запоминающего устройства послужат конденсаторы, содержимое которых будет периодически обновляться во избежание ошибок;
  • расчёт будет проводиться с помощью логических, а не математических действий.

В 1939 г. Дж. Атанасов вместе со своим ассистентом Клиффордом Э. Берри построил и испытал первую вычислительную машину, предназначенную для решения систем линейных уравнений с тридцатью неизвестными. Они решили назвать ее АВС (Atanasoff Berry Computer).

Проект «Ультра». Идея проекта «Ультра» зародилась после успешной операции польской разведки. Еще до оккупации Польши Германией в 1939 г. поляки создали точную копию немецкого шифровального аппарата «ENIGMA» («Загадка») и переправили его в Англию вместе с описанием принципа работы. Математический метод дешифровки был разработан группой математиков, в число которых входил Алан Тьюринг.

Машина Тьюринга – это прообраз программируемого компьютера. Тьюринг ввел математическое понятие абстрактного эквивалента вычислительного алгоритма, получившего название машины Тьюринга. Каждый шаг машины Тьюринга связан с тремя операциями – запись, вычисление и сдвиг.

Такая интерпретация вычислительного алгоритма широко используется и в настоящее время, например для оценки вычислительных возможностей компьютеров будущего – квантовых компьютеров. Тьюринг показал принципиальную возможность решения автоматами любой проблемы при условии, если возможна ее алгоритмизация.

Алан Тьюринг участвовал в послевоенные годы в создании мощного компьютера – машины с хранимыми в памяти программами, ряд свойств которой он взял от своей гипотетической универсальной машины. Опытный образец компьютера АСЕ (Automatic Соmputing Engine – автоматическое вычислительное устройство) вступил в эксплуатацию в мае 1950 г.

«Колосс» (Collossus). В конце 1943 г. «затворники» Блетчли-Парка построили программируемую электронную машину. Тысячи перехваченных за день неприятельских сообщений вводились в память «Колосса» именно так, как предлагал Алан Тьюринг, – в виде символов, закодированных на перфоленте.

Каждая машина имела пять считывающих устройств. В результате за секунду обрабатывалось поразительное количество информации: около 25 000 символов. Хотя использование вакуумных ламп ознаменовало крупный шаг вперед, «Колосс» не оказал большого влияния на развитие вычислительной техники. Для этого были следующие причины:

  1. «Колосс» был не универсальной, а специализированной машиной, применение которой ограничивалось расшифровкой секретных кодов;
  2. разработка и состав команды держались в секрете до 1970 г., а алгоритмы дешифрования – еще более длительный срок.

Поколения ЭВМ

В вычислительной технике существует своеобразная периодизация развития ЭВМ. Их принято делить на поколения. Поколение ЭВМ – это все типы и модели ЭВМ, построенные на одних и тех же научных и технических принципах.

Будущее компьютеров

Современные компьютеры работают все медленнее, не справляясь с задачами, которые ставит перед ними человек. Ученые уже разрабатывают вероятностные процессоры, молекулярные, биологические, оптические и квантовые компьютеры, которые придут устаревшим машинам на смену.

Главную роль в устройстве компьютера играют электроны. Оседая в ячейках памяти и регистрах процессора, они формируют информацию, с которой работает пользователь.

Но скорость электронов конечна и не очень велика. И время, которое необходимо электрону для прохождения по системе, становится решающей преградой в дальнейшем повышении производительности. Выход можно найти либо в уменьшении размеров систем, либо в новом подходе к их устройству. И поскольку бесконечно уменьшать размеры нельзя, в ход идут новые алгоритмы работы и попытки заменить электроны другими частицами.

Молекулярные компьютеры

Недавно компания Hewlett-Packard объявила о первых успехах в изготовлении компонентов, из которых могут быть построены мощные молекулярные компьютеры. Ученые из HP и Калифорнийского университета в Лос-Анджелесе (UCLA) объявили о том, что им удалось заставить молекулы ротаксана переходить из одного состояния в другое - по существу, это означает создание молекулярного элемента памяти.

Следующим шагом должно стать изготовление логических ключей, способных выполнять функции И, ИЛИ и НЕ. Весь такой компьютер может состоять из слоя проводников, проложенных в одном направлении, слоя молекул ротаксана и слоя проводников, направленных в обратную сторону.

Конфигурация компонентов, состоящих из необходимого числа ячеек памяти и логических ключей, создается электронным способом. По оценкам ученых HP, подобный компьютер будет в 100 млрд. раз экономичнее современных микропроцессоров, занимая во много раз меньше места.

Сама идея этих логических элементов не является революционной: кремниевые микросхемы содержат миллиарды таких же. Но преимущества в потребляемой энергии и размерах способны сделать компьютеры вездесущими.

Молекулярный компьютер размером с песчинку может содержать миллиарды молекул. А если научиться делать компьютеры не трехслойными, а трехмерными, преодолев ограничения процесса плоской литографии, применяемого для изготовления микропроцессоров сегодня, преимущества станут еще больше.

Кроме того, молекулярные технологии сулят появление микромашин, способных перемещаться и прилагать усилие. Причем для создания таких устройств можно применять даже традиционные технологии травления. Когда-нибудь эти микромашины будут самостоятельно заниматься сборкой компонентов молекулярного или атомного размера.

Первые опыты с молекулярными устройствами еще не гарантируют появления таких компьютеров, однако это именно тот путь, который предначертан всей историей предыдущих достижений. Массовое производство действующего молекулярного компьютера вполне может начаться где-нибудь в 2025 году.

Биокомпьютеры

Применение в вычислительной технике биологических материалов позволит со временем уменьшить компьютеры до размеров живой клетки. Пока эта чашка Петри, наполненная спиралями ДНК, или нейроны, взятые у пиявки и подсоединенные к электрическим проводам.

По существу, наши собственные клетки - это не что иное, как биомашины молекулярного размера, а примером биокомпьютера, конечно, служит наш мозг.
Ихуд Шапиро (Ehud Shapiro) из Вейцманоского института естественных наук соорудил пластмассовую модель биологического компьютера высотой 30 см.

Если бы это устройство состояло из настоящих биологических молекул, его размер был бы равен размеру одного из компонентов клетки - 0,000025 мм. По мнению Шапиро, современные достижения в области сборки молекул позволяют создавать устройства клеточного размера, которое можно применять для биомониторинга.

Более традиционные ДНК-компьютеры в настоящее время используются для расшифровки генома живых существ. Пробы ДНК применяются для определения характеристик другого генетического материала: благодаря правилам спаривания спиралей ДНК, можно определить возможное расположение четырех базовых аминокислот (A, C, T и G).

Чтобы давать полезную информацию, цепочки ДНК должны содержать по одному базовому элементу. Это достигается при помощи луча света и маски. Для получения ответа на тот или иной вопрос, относящийся к геному, может потребоваться до 80 масок, при помощи которых создается специальный чип стоимостью более 12 тыс. дол. Здесь-то и пригодилась микросхема DMD от Texas Instruments: ее микрозеркала, направляя свет, исключают потребность в масках.

Билл Дитто (Bill Ditto) из Технологического института штата Джорджия провел интересный эксперимент, подсоединив микродатчики к нескольким нейронам пиявки. Он обнаружил, что в зависимости от входного сигнала нейроны образуют новые взаимосвязи.

Вероятно, биологические компьютеры, состоящие из нейроподобных элементов, в отличие от кремниевых устройств, смогут искать нужные решения посредством самопрограммирования. Дитто намерен использовать результаты своей работы для создания мозга роботов будущего.

Оптические компьютеры


По сравнению с тем, что обещают молекулярные или биологические компьютеры, оптические ПК могут показаться не очень впечатляющими. Однако ввиду того, что оптоволокно стало предпочтительным материалом для широкополосной связи, всем традиционным кремниевым устройствам, чтобы передать информацию на расстояние нескольких миль, приходится каждый раз преобразовывать электрические сигналы в световые и обратно.

Эти операции можно упростить, если заменить электронные компоненты чисто оптическими. Первыми станут оптические повторители и усилители оптоволоконных линий дальней связи, которые позволят сохранять сигнал в световой форме при передаче через все океаны и континенты.

Со временем и сами компьютеры перейдут на оптическую основу, хотя первые модели, по-видимому, будут представлять собой гибриды с применением как света, так и электричества. Оптический компьютер может быть меньше электрического, так как оптоволокно значительно тоньше (и быстрее) по сравнению с сопоставимыми по ширине полосы пропускания электрическими проводниками.

По существу, применение электронных коммутаторов ограничивает быстродействие сетей примерно 50 Гбит/с. Чтобы достичь терабитных скоростей, необходимых для передачи видео по Интернету, потребуются оптические коммутаторы. Это объясняет, почему в телекоммуникациях побеждает оптоволокно: оно дает тысячекратное увеличение пропускной способности, причем мультиплексирование позволяет повысить ее еще больше.

Инженеры пропускают по оптоволокну все больше и больше коротковолновых световых лучей. В последнее время для управления ими применяются чипы типа TI DMD с сотнями тысяч микрозеркал. Если первые трансатлантические медные кабели позволяли передавать всего 2500 Кбит/с, то первое поколение оптоволоконных кабелей - уже 280 Мбит/с. Кабель, проложенный сейчас, имеет теоретический предел пропускной способности в 10 Гбит/с на один световой луч определенной длины волны в одном оптоволокне.

Недавно компания Quest Communications проложила оптический кабель с 96 волокнами (48 из них она зарезервировала для собственных нужд), причем по каждому волокну может пропускаться до восьми световых лучей с разной длиной волны. Возможно, что при дальнейшем развитии технологии мультиплексирования число лучей увеличится еще больше, что позволит расширять полосу пропускания без замены кабеля.

Целиком оптические компьютеры появятся через десятилетия, но работа в этом направлении идет сразу на нескольких фронтах. Например, ученые из университета Торонто создали молекулы жидких кристаллов, управляющие светом в фотонном кристалле на базе кремния. Они считают возможным создание оптических ключей и проводников, способных выполнять все функции электронных компьютеров.

Однако прежде чем оптические компьютеры станут массовым продуктом, на оптические компоненты, вероятно, перейдет вся система связи - вплоть до "последней мили" на участке до дома или офиса. В ближайшие 15 лет оптические коммутаторы, повторители, усилители и кабели заменят электрические компоненты.

Квантовые компьютеры

Квантовый компьютер будет состоять из компонентов субатомного размера и работать по принципам квантовой механики. Квантовый мир - очень странное место, в котором объекты могут занимать два разных положения одновременно. Но именно эта странность и открывает новые возможности.

Например, один квантовый бит может принимать несколько значений одновременно, то есть находиться сразу в состояниях "включено", "выключено" и в переходном состоянии. 32 таких бита, называемых q-битами, могут образовать свыше 4 млрд комбинаций - вот истинный пример массово-паралельного компьютера. Однако, чтобы q-биты работали в квантовом устройстве, они должны взаимодействовать между собой. Пока ученым удалось связать друг с другом только три электрона.

Уже есть несколько действующих квантовых компонентов - как запоминающих, так и логических. Теоретически квантовые компьютеры могут состоять из атомов, молекул, атомных частиц или "псевдоатомов". Последний представляет собой четыре квантовых ячейки на кремниевой подложке, образующих квадрат, причем в каждой такой ячейке может находиться по электрону. Когда присутствуют два электрона, силы отталкивания заставляют их размещаться по диагонали.

Одна диагональ соответствует логической "1", а вторая - "0". Ряд таких ячеек может служить проводником электронов, так как новые электроны будут выталкивать предыдущие в соседние ячейки. Компьютеру, построенному из таких элементов, не потребуется непрерывная подача энергии. Однажды занесенные в него электроны больше не покинут систему.

Теоретики утверждают, что компьютер, построенный на принципах квантовой механики, будет давать точные ответы, исключая возможность ошибки. Так как в основе квантовых вычислений лежат вероятностные законы, каждый q-бит на самом деле представляет собой и "1", и "0" с разной степенью вероятности. В результате действия этих законов менее вероятные (неправильные) значения практически исключаются.

Насколько близко мы подошли к действующему квантовому компьютеру? Прежде всего необходимо создать элементы проводников, памяти и логики. Кроме того, эти простые элементы нужно заставить взаимодействовать друг с другом. Наконец, нужно встроить узлы в полноценные функциональные чипы и научиться тиражировать их.

Термин "квантовый скачок" означает, что в квантовом мире изменения происходят скачками. Похоже, что где-то около 2030 года, если не раньше, подобный скачок произойдет и в вычислительной технике: к тому времени мы
перейдем от традиционных кремниевых полупроводников к более совершенным технологиям.
Результатом станут намного более компактные, быстродействующие и дешевые компьютеры. Появится возможность наделять любые промышленные продукты определенными интеллектуальными и коммуникационными способностями.

Банка кока-колы помещенная в холодильник, на самом деле будет саморегистрироваться в его сети; предметы - автоматически упорядочиваться. Каждый человек ежесекундно будет пользоваться Сетью, хотя за большинством обращений к нему будут следить специальные устройства, автоматически отвечая на вызовы или переадресовывая их в службу передачи сообщений.

К 2040 году может начаться распространение вживленных устройств с прямым доступом к нейронам. Ближе к середине столетия в мире киберпространства будут царить микро- и наноустройства (интеллектуальная пыль). К тому времени Интернет будет представлять собой отображение всего реального мира.

Представьте себе мир, окутанный беспроводной сетью данных, по которой путешествуют огромные объемы информации. Тогда такие фантастические и мистические явления, как телепатия и телекинез, станут самым простым проявлением Всемирной сети.

Грубо говоря, телепатия будет выглядеть как сгенерированная вашими нейронами информация, путешествуя в пакетах к другим нейронам для расшифровки. Почти как протокол TCP/IP сегодня. А телекинез (передвижение мыслью физических объектов) будут производить наноустройства, активированные вашей мысленной командой. Простейшие устройства, реагирующие на мысленные команды, существуют уже и сегодня.

Хотя к тому времени вам вряд ли захочется передвигать реальные объекты, если возможно будет просто переместить их цифровые копии. Без шлемов виртуальной реальности можно будет совершить полноценный круиз в любой уголок земного шара, не покидая своей квартиры. Мысленно можно будет вызвать цифровую проекцию любого места, причем события в нем будут отображаться в реальном времени. Или наоборот, спроецировать себя, в любую точку нашей планеты. Таким образом, грань между кибер- и реальным пространством исчезнет.

На биологическом фронте исследования в области клетки приближают возможность замены тканей или органов, включая нейроны, которые раньше считались незаменимыми. Более того, клетки и ткани можно будет наделять способностями обработки и передачи данных. Подобный контроль над живыми процессами дает надежду на увеличение продолжительности жизни: ученые не видят принципиальных препятствий к тому, чтобы люди жили по несколько сотен лет.

К концу 21-го века, благодаря достижениям генной инженерии в сочетании с биоинженерными тканями и имплантантами, люди станут совсем не похожими на современных. Пока не ясно, какой процент населения пожелает принять участие в подобных усовершенствованиях, но отказавшиеся рискуют остаться сторонними наблюдателями, следя с обочины за тем, как люди, развитые биоинженерными методами, гигантскими шагами устремляются вперед рука об руку с разумными машинами.

Могу себе представить, как в какой-то момент человечество разделится на два лагеря, будут социальные волнения, но прогресс не остановить. Если все это будет происходить, как прогнозируется, годах в 2050-х, то, как вы думаете, кто будет самой консервативной частью общества?

Правильно - нынешняя молодежь, правда, к тому времени немного постаревшая. Примерно, как сейчас бабушки и дедушки недоверчиво косятся на коробчатые компьютеры, так же будущее старшее поколение будет недоверчиво смотреть на своих детей, получающих биологические имплантанты при рождении и общающихся не открывая рта.

Конечно, заглянуть вперед более чем на несколько лет можно лишь чисто умозрительно, хотя в том что ко второй половине этого века обрабатывающая мощность компьютеров превысит интеллектуальные способности человека, можно не сомневаться. Вполне вероятно, что к тому времени начнется и колонизация Солнечной системы. А к 22-му веку и люди, и компьютеры широко распространятся по ее планетам и начнут готовиться к освоению ближайших звездных систем.

Пока здравый смысл не приспособился к переменчивому миру квантовой механики, это будущее кажется чуждым такому знакомому современному миру. Путешествие во времени может завести и в рай, и в ад, но во всяком случае скучным его не назовешь.

Заключение


Рассмотренные в проекте задачи позволяют сделать вывод, компьютер – машина для проведения вычислений, ввода, вывода, хранения и передачи информации. Своё название компьютеры получили по своей основной функции - проведению вычислений.

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. Первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту.

Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: счёты, логарифмическая линейка, механический арифмометр, электронный компьютер. Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при помощи простых счёт даже быстрее, чем нерасторопный владелец современного калькулятора.

Естественно, сама по себе, производительность и скорость счёта современных вычислительных устройств давно уже превосходят возможности самого выдающегося расчётчика-человека.
В истории вычислительной техники выделяют четыре периода:

  1. Домеханический (с древних времен до середины XVII в.).
  2. Механический (с середины XVII в. до конца XIX в.).
  3. Электромеханический (с конца XIX в. до 40-х гг. XX в.).
  4. Электронный (с 40-х гг. XX в. по настоящее время).

Современные компьютеры работают все медленнее, не справляясь с задачами, которые ставит перед ними человек. Ученые уже разрабатывают вероятностные процессоры, молекулярные, биологические, оптические и квантовые компьютеры, которые придут устаревшим машинам на смену.


Если страница Вам понравилась, поделитесь в социальных сетях:

Объявление

Статистика